Improved reconstruction attacks using range query leakage

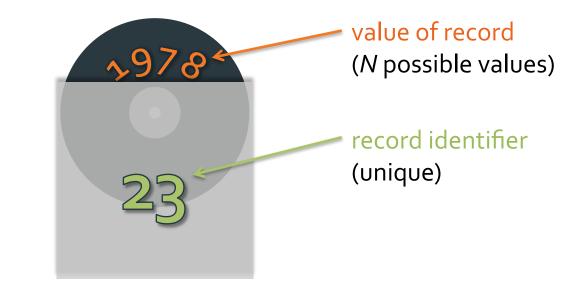
Marie-Sarah Lacharité Brice Minaud Kenny Paterson

Information Security Group

ROYAL HOLLOWAY UNIVERSITY

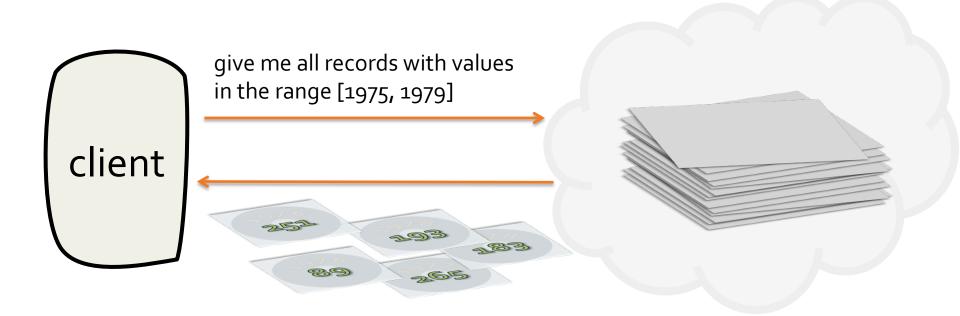
Application Setting

Storing Records in the Cloud

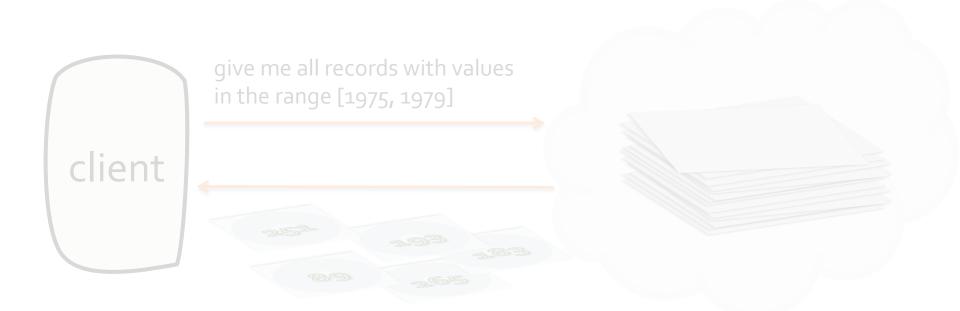


R records

Application Scenario



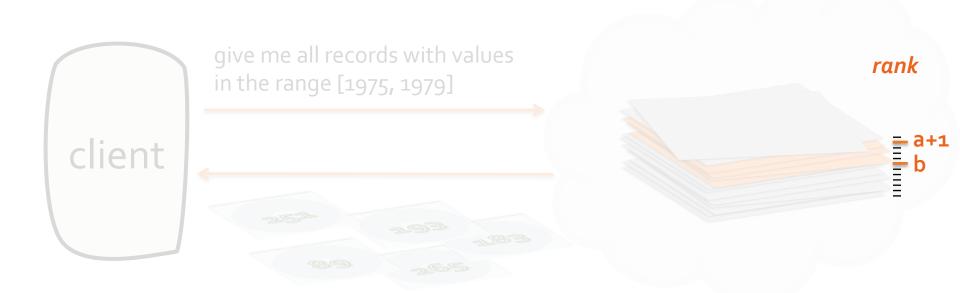
Access Pattern Leakage



record identifiers

OPE, ORE schemes, POPE, [HK16], Blind seer, [Lu12], [FJKNRS15],...

Access Pattern Leakage and Rank Leakage



record identifiers

{251, 89, 193, 265, 183}

FH-OPE, Lewi-Wu, Arx, Cipherbase, EncKV,...

Assumptions

- 1. Data is **dense:** all values appear in at least one record.
- 2. Queries are **uniformly distributed**.

Target: full reconstruction: find the value associated with each record.

Best previous result (Kellaris et al., CCS 2016):

Full reconstruction by analysing access pattern leakage from $O(N^2 \log N)$ queries.

Our Main Results (eprint 2017/701)

• Full reconstruction with O(NlogN) queries

- in fact, expected $N \cdot (3 + \log N)$.

• Approximate reconstruction with relative accuracy ε from $O(N \cdot (\log 1/\varepsilon))$ queries

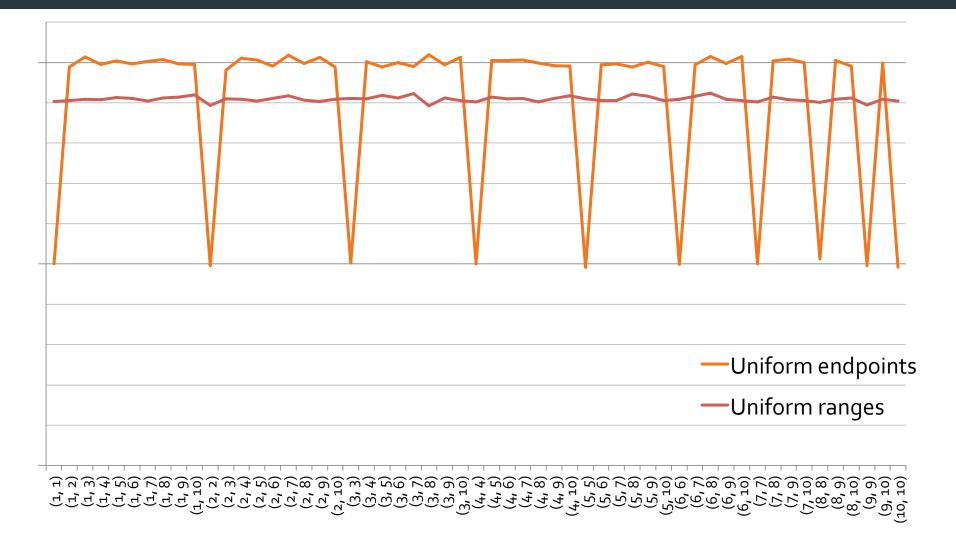
- in fact, expected $5/4 \cdot N \cdot (\log 1/\epsilon) + O(N)$.

• Approximate reconstruction using an *auxiliary distribution* and rank leakage.

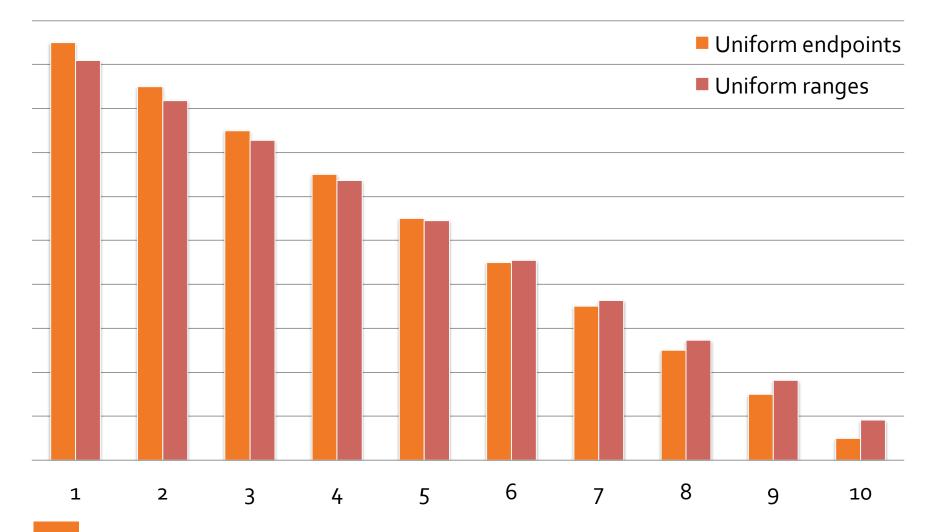
- more efficient in practice, evaluation via simulation.

 applies in the non-dense case too, giving a new attack on OPE/ORE schemes.

Uniform Queries: Uniform Endpoints vs. Uniform Ranges (N=10)



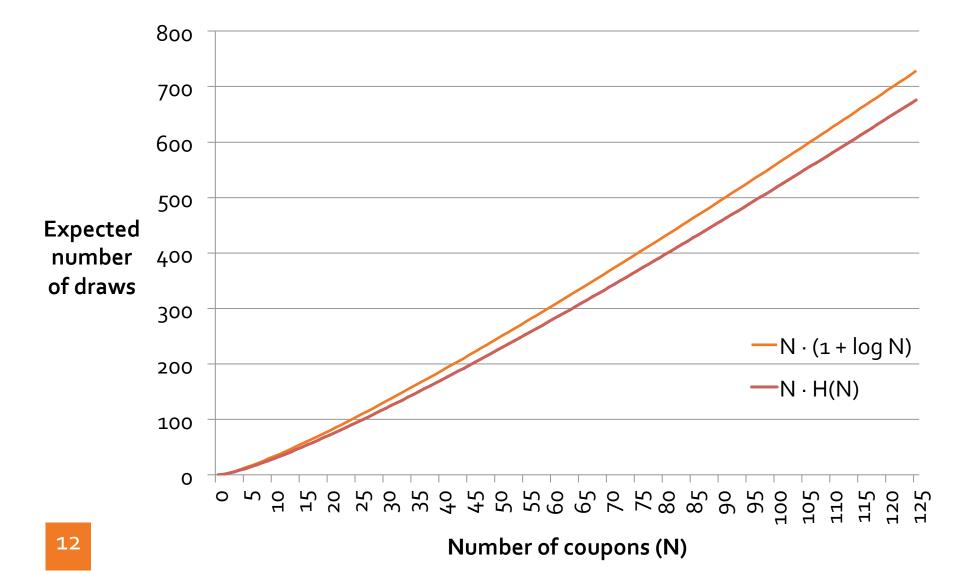
Distribution of Left Endpoints: Uniform Endpoints vs. Uniform Ranges (*N*=10)



Coupon Collector's Problem



Coupon Collector's Problem



Attack 1: Full Reconstruction

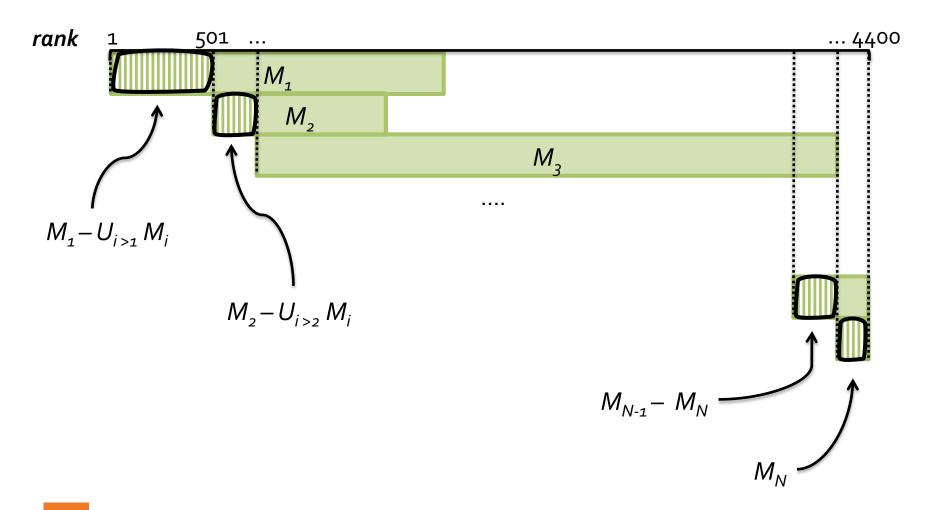
Motivating Example (with Rank Leakage)

- Suppose left endpoints of query intervals are chosen uniformly at random.
- Wish to observe at least 1 query with each of the *N* possible left endpoints.
- Expected number of queries needed is at most $N \cdot (1 + \log N)$.

hidden		leaked				
[x,y]	a = rank(x-1)	b = rank(y)	matching IDs			
[20,25]	1300	1500	M ₂₀			
[1,18]	0	1200	M ₁			
[55,125]	3100	4400	M ₅₅			
[2,10]	500	800	M ₂			
[7,98]	700	4200	M ₇			
			rela			

relabelled for convenience

Motivating Example (with Rank Leakage)

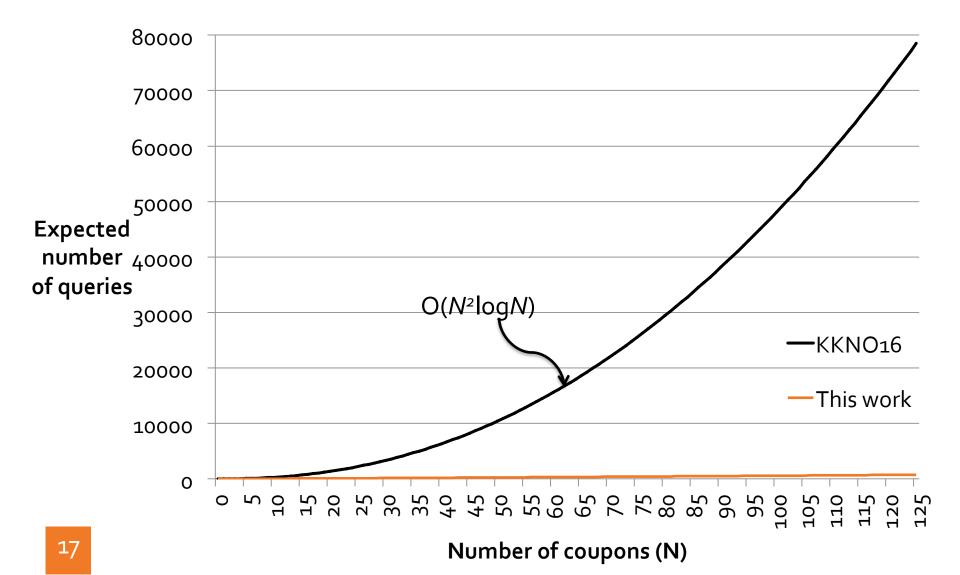


Full Reconstruction (with Rank Leakage)

- Now suppose queries have ranges chosen uniformly at random.
- We present a data-optimal algorithm (fails ⇒ full reconstruction is impossible).
- Expected number of sufficient queries is at most $N \cdot (2 + \log N)$ for $N \ge 27$.
- Main idea: partition, then sort (easy with rank leakage, harder without).
- Expected number of necessary queries is at least $1/2 \cdot N \cdot \log N O(N)$

for any algorithm.

Full Reconstruction (with Rank Leakage)



Full Reconstruction (with Rank Leakage): Partitioning Step

	record	matched query?						
	ID	1	2	3	4	5	6	7
⇒	20	\checkmark	\checkmark	×	×	\checkmark	×	×
	23	✓	\checkmark	×	×	✓	\checkmark	✓
	29	×	\checkmark	\checkmark	×	×	\checkmark	×
⇒	89	×	\checkmark	\checkmark	×	\checkmark	\checkmark	×
	193	\checkmark	\checkmark	×	×	\checkmark	\checkmark	\checkmark

• Equality of matching defines a **partition** of records.

18

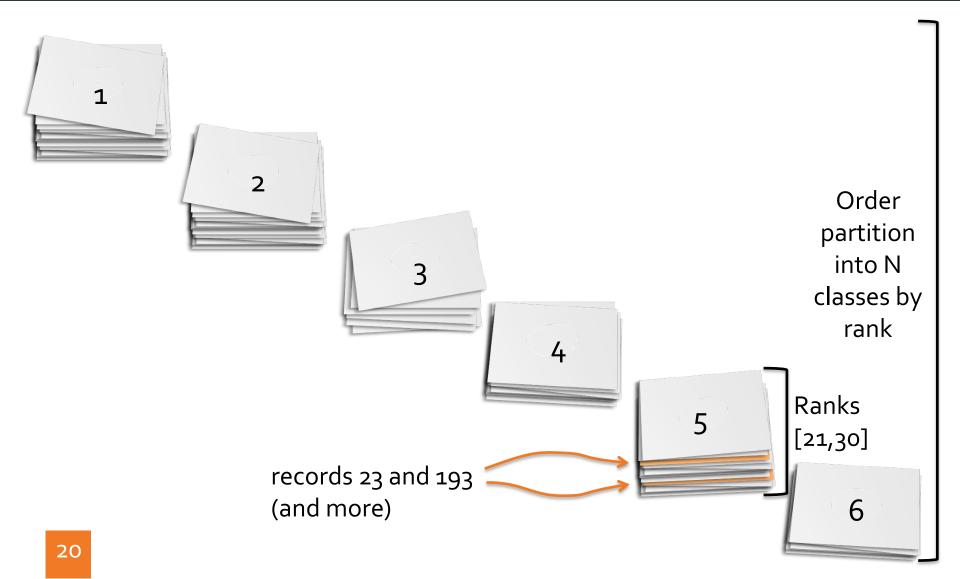
- Records in same class of partition cannot be distinguished.
- For complete reconstruction, we need *N* classes one class per value.

Full Reconstruction (with Rank Leakage): Partitioning Step

	record	matched query?						
	ID	1	2	3	4	5	6	7
⇒	20	\checkmark	\checkmark	×	×	\checkmark	×	×
	23	✓ [1,100]	✓ [18,82]	×	×	✓ [16,96]	✓ [16,30]	✓ [21,61]
	29	×	\checkmark	\checkmark	×	×	\checkmark	×
⇒	89	×	\checkmark	\checkmark	×	\checkmark	\checkmark	×
	193	\checkmark	\checkmark	×	×	\checkmark	\checkmark	\checkmark

Can also deduce from rank leakage that, e.g., records 23 and 193 have ranks in [21,30], by intersecting rank intervals.

Full Reconstruction (with Rank Leakage): Partitioning Step



Full Reconstruction (with Rank Leakage): Proof Intuition

- Hard part is to show that O(N log N) queries suffice with a small constant.
- Proof consists of showing that **if** certain favourable queries are made, then partitioning succeeds in constructing *N* classes.
- Roughly speaking, for our proof we hope for queries on ranges:

1. [x, *] for all $1 \le x \le N/2$ (left coupons)

2. [*,y] for all $N/2+1 \le y \le N$ (right coupons)

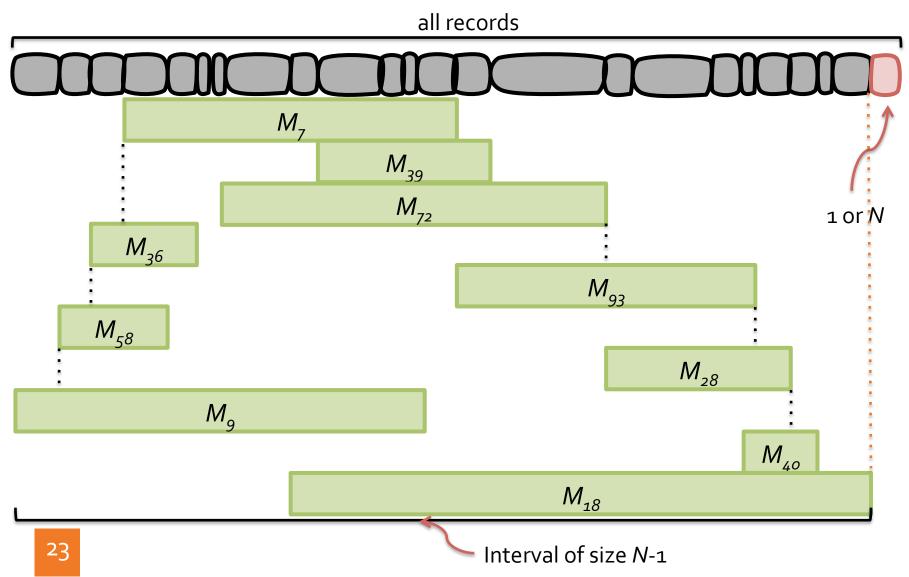
3. [N/2+1,y] and [x,N] for some $y \ge x$.

- Assuming these all arise, then a combinatorial argument establishes the success of the partitioning step.
- First two cases are essentially a pair of coupon collector problems success with high probability with O(N log N) queries.
- Third case is a high probability event: $1 e^{-Q/(2N+2)}$ for Q queries.

Full Reconstruction (without Rank Leakage)

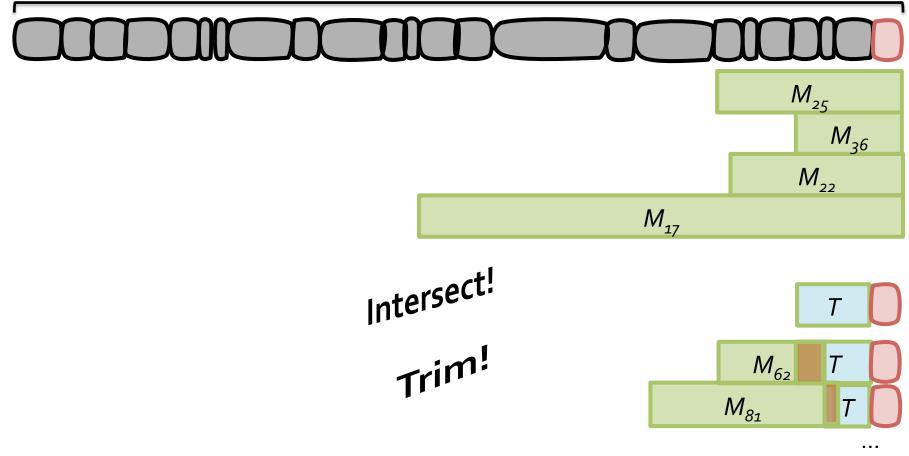
- Can only recover values up to reflection.
- Data-optimal algorithm (fails ⇒ full reconstruction is impossible).
- Expected number of sufficient queries is at most $N \cdot (3 + \log N)$ for $N \ge 26$
- Partition (as before), then sort*.
- Expected number of necessary queries is at least $1/2 \cdot N \cdot \log N O(N)$
 - for any algorithm.

Full Reconstruction (without Rank Leakage): Sorting Step



Full Reconstruction (without Rank Leakage): Sorting Step – Extending

all records

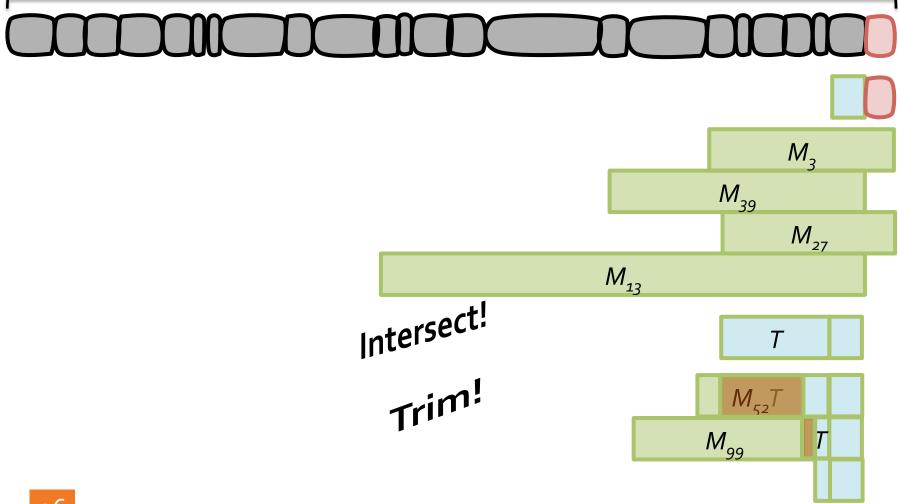


Full Reconstruction (without Rank Leakage): Sorting Step – Extending

all records

Full Reconstruction (without Rank Leakage): Sorting Step

all records



Full Reconstruction (without Rank Leakage): Sorting Step

all records

•••

Full Reconstruction (without Rank Leakage): Proof Intuition

- Hard part is again to show that O(N log N) queries suffice, with a small constant.
- Proof again consists of showing that **if** certain favourable queries are made, then partitioning succeeds in constructing *N* classes.
- Coupon collecting bounds then establish that O(N log N) queries are enough.

Attack 2: Approximate Reconstruction

Approximate Reconstruction Attack (without Rank Leakage)

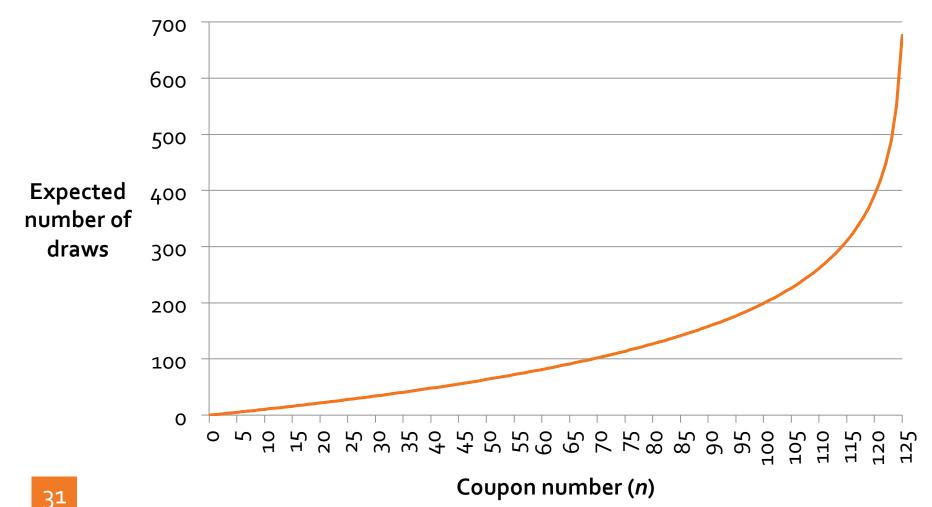
- Recover values up to **reflection** and with relative error ε.
- Expected number of sufficient queries is $5/4 \cdot N \cdot (\log 1/\epsilon) + O(N)$.
- Expected number of necessary queries is at least $1/2 \cdot N \cdot (\log 1/\epsilon) O(N)$

for any algorithm.

• Not data-optimal without rank leakage (but *is* with it)

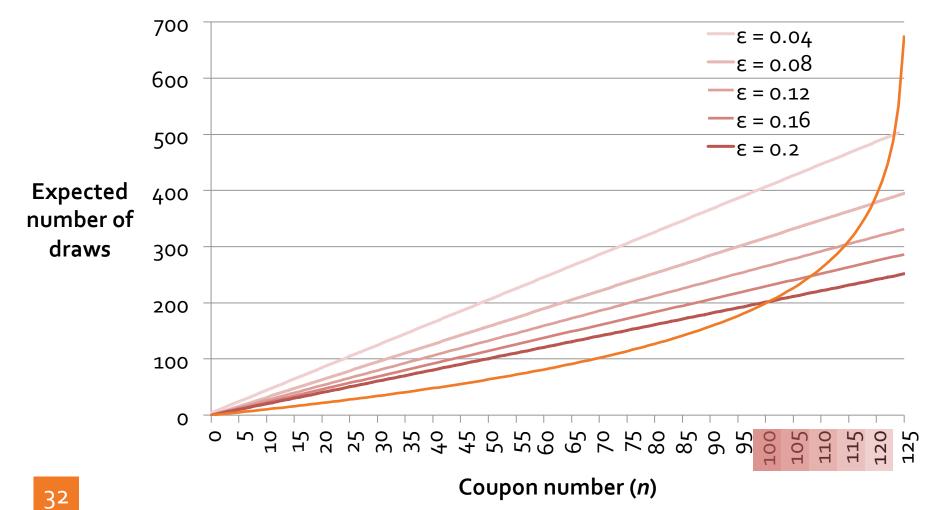
Coupon Collection (N=125)

Collecting *n* of 125 coupons

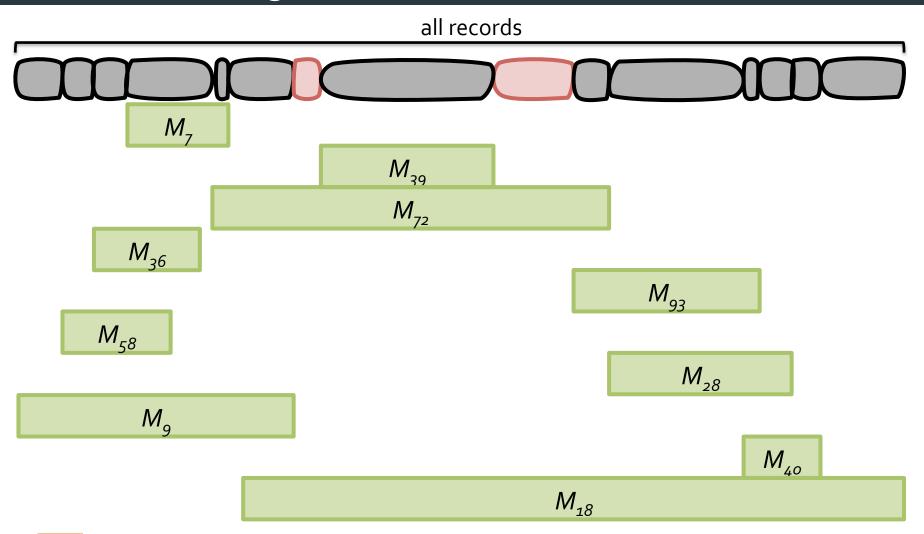


Coupon Collection (*N*=125)

Collecting fraction (1- ε) of 125 coupons

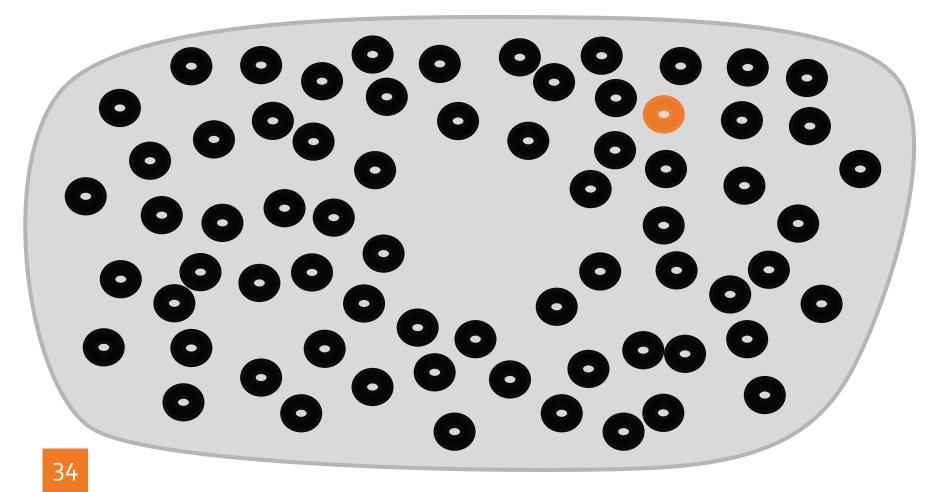


Approximate Reconstruction: Old Partitioning Method Doesn't Work



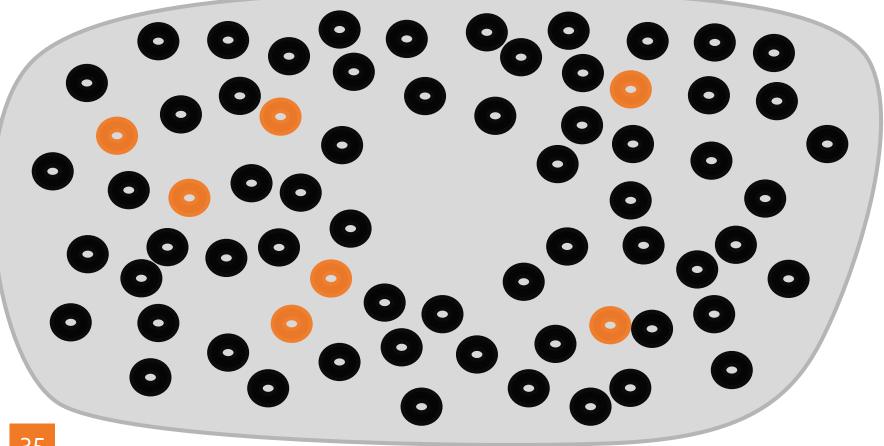
Approximate Reconstruction: Partitioning Step

1. Pick any record *r*.



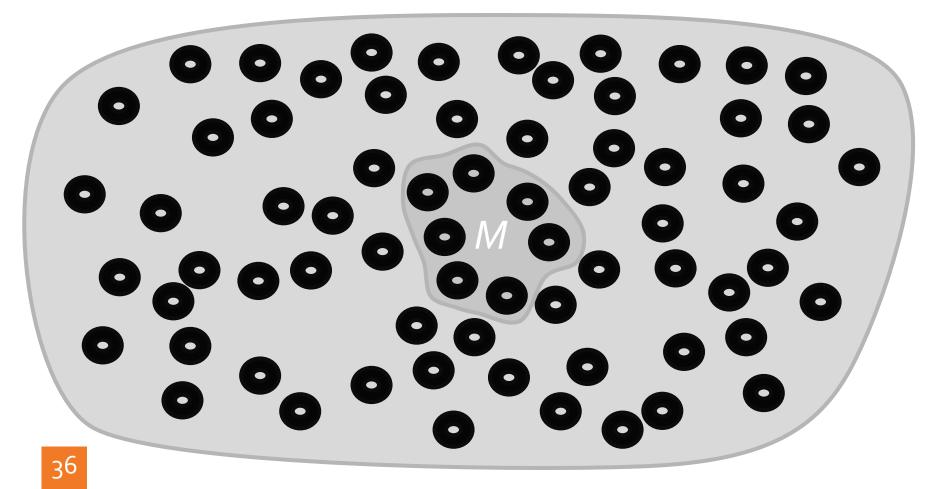
Approximate Reconstruction: Partitioning Step

2. Intersect all queries matching r to get M.

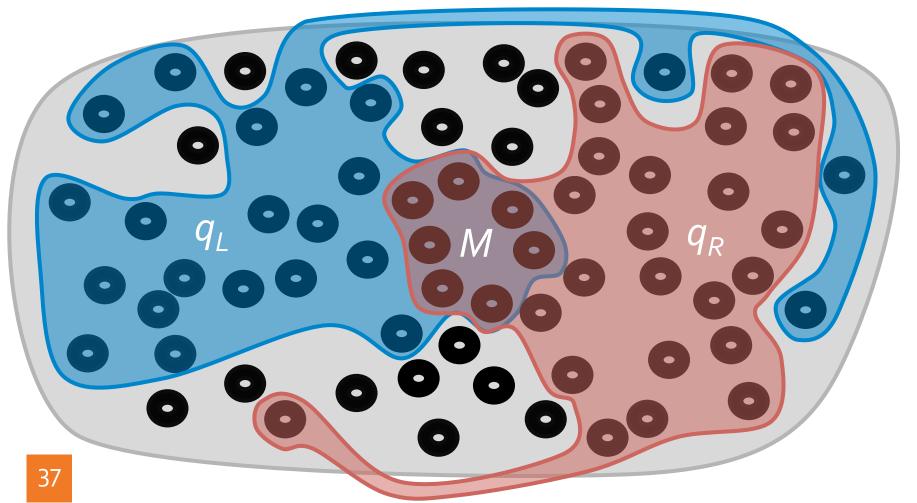


Approximate Reconstruction: Partitioning Step

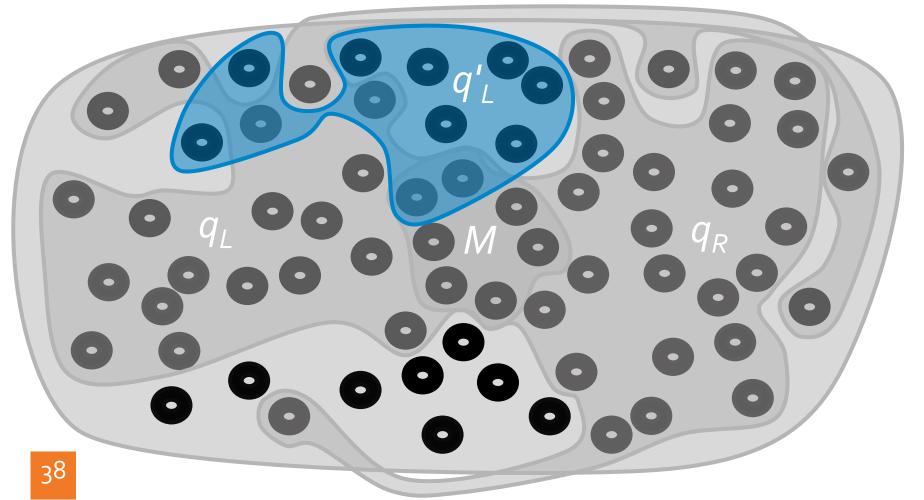
2. Intersect all queries matching r to get M.



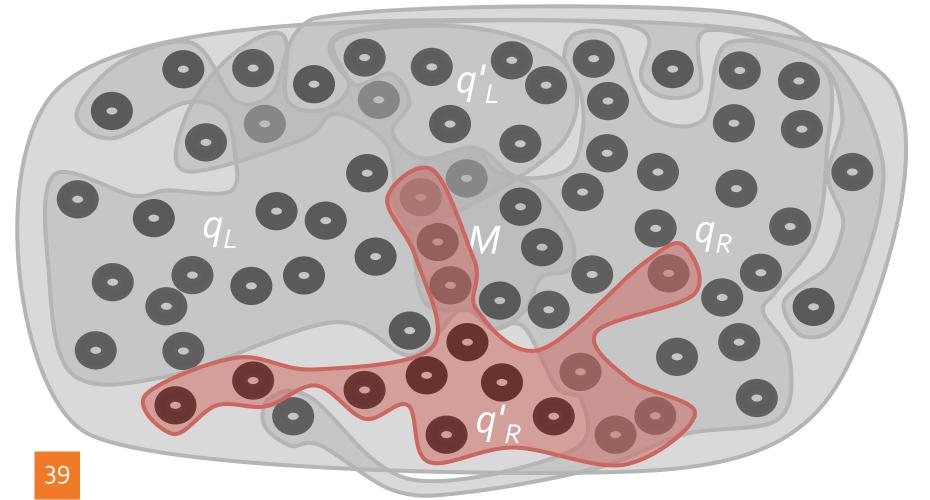
3. Find q_L and q_R : $q_L \cap q_R = M$ and $|q_L \cup q_R|$ maximised.



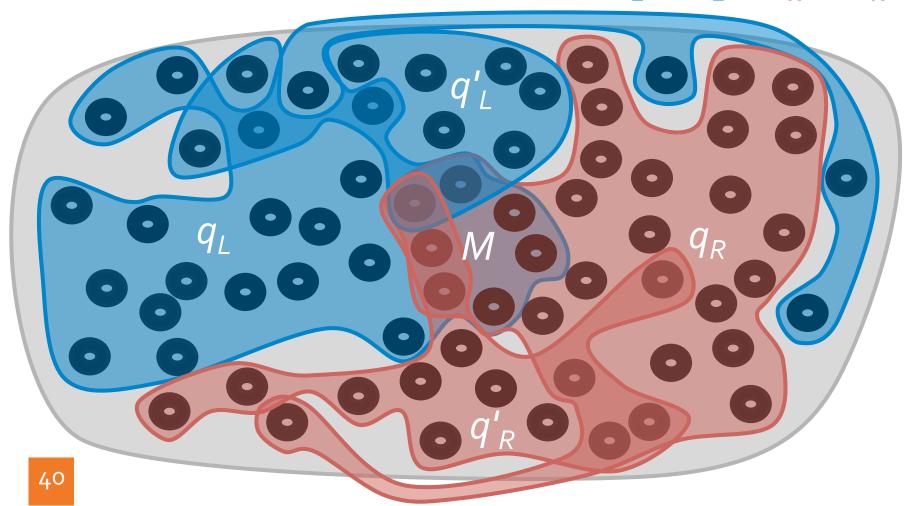
4. Find $q'_L : q_L \cap q'_L \neq \emptyset, q'_L \cap q_R \subseteq M, |q_L \cup q'_L|$ maximised.



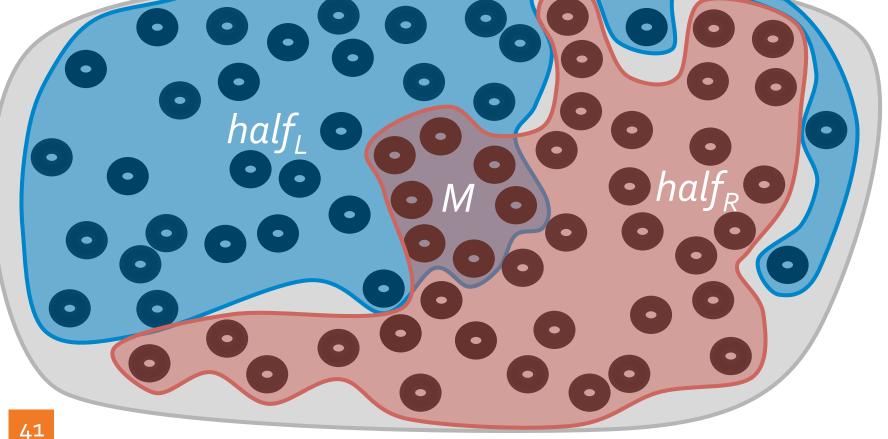
5. Find $q'_R : q_R \cap q'_R \neq \emptyset, q'_R \cap q_L \subseteq M, |q_R \cup q'_R|$ maximised.



6. Start over if not every record is in $q_L \cup q'_L \cup q_R \cup q'_R$.



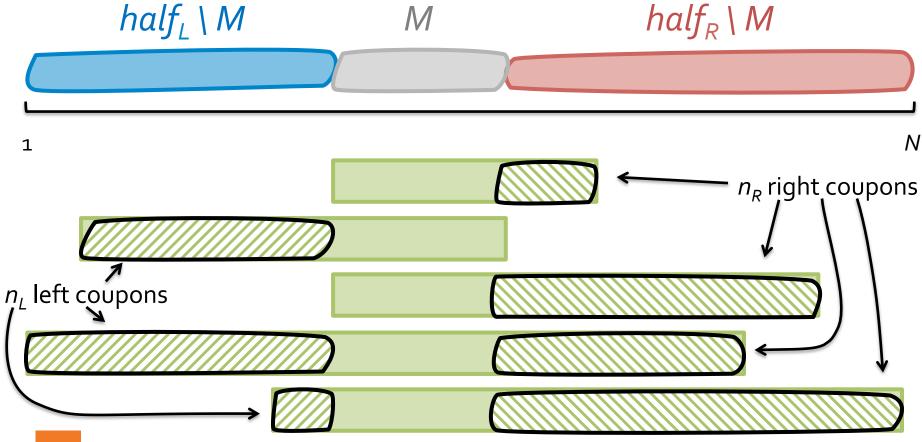
7. Split into $half_L = q_L \cup q'_{L_1} half_R = q_L \cup q'_{L_1}$ and M.



7. Split into $half_L = q_L \cup q'_{L_1} half_R = q_L \cup q'_{L_1}$ and M. hal •

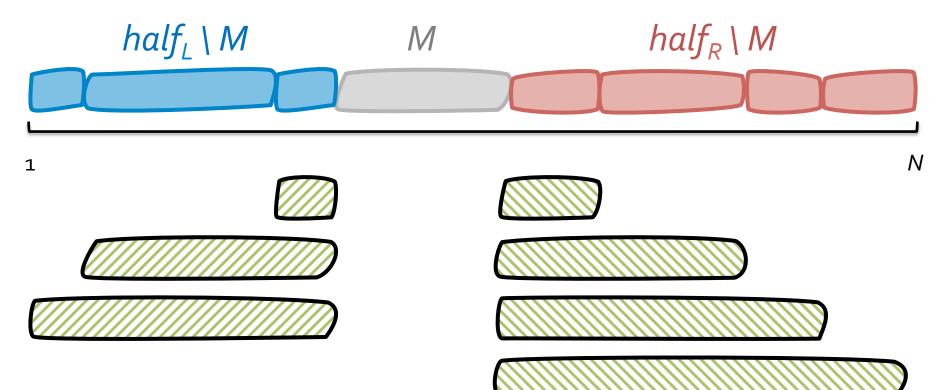
Approximate Reconstruction: Sorting Step

8. Form left & right coupons with queries containing M.



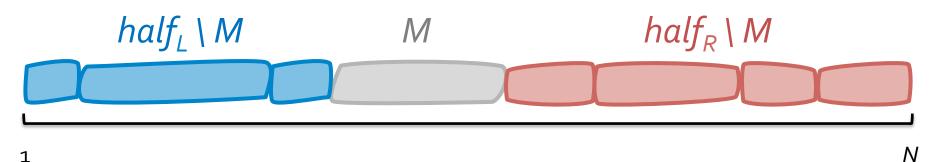
Approximate Reconstruction: Sorting Step

9. Use left & right coupons to **sort** $half_L \setminus M \& half_R \setminus M$.



Approximate Reconstruction: Sorting Step

9. Use left & right coupons to **sort** $half_L \setminus M \& half_R \setminus M$.



$$n_L + \mathbf{1} + n_R = (\mathbf{1} - \varepsilon) \cdot N$$

$$\mathbf{x}$$

reconstruction with precision $\varepsilon \cdot N$

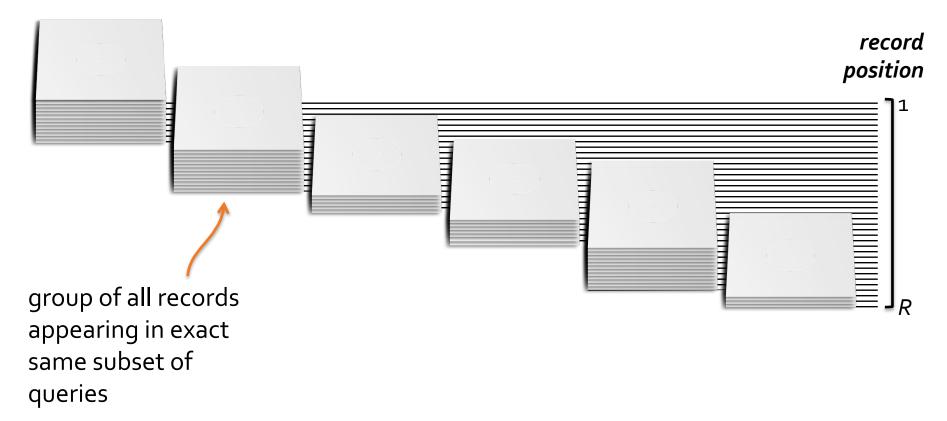
Attack 3: Reconstruction with Auxiliary Data

Reconstruction with Auxiliary Data and Rank Leakage

- As before, queries have ranges chosen uniformly at random.
- Assume access pattern and rank are leaked.
- We now also assume that an **approximation to the distribution on values** is known.
 - "Auxiliary data".
 - From aggregate data, or from another reference source.
- We show experimentally that, under these assumptions, far fewer queries are needed.
- Now no requirement on density, so interesting for OPE and ORE schemes too (OPE/ORE schemes are trivial to break in dense case).

Auxiliary Data Attack: Partitioning Step

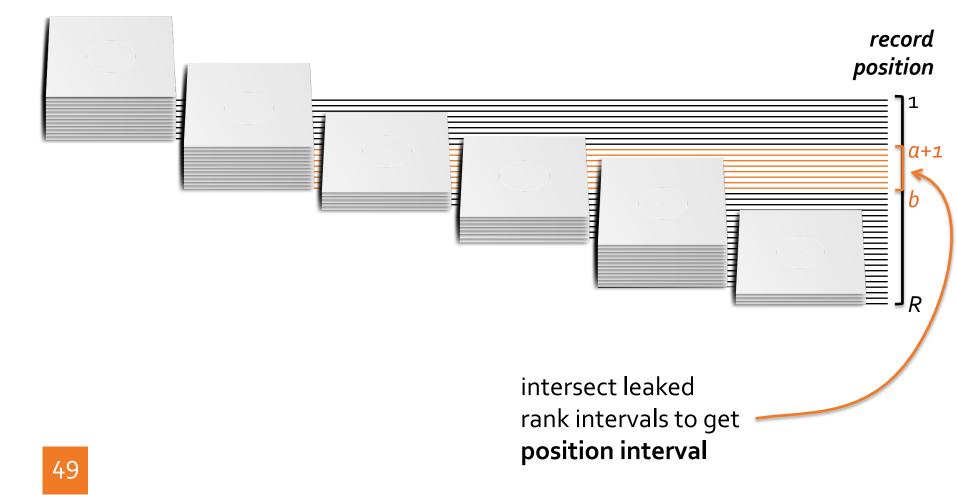
1. **Partition** records as in full reconstruction attack.



48

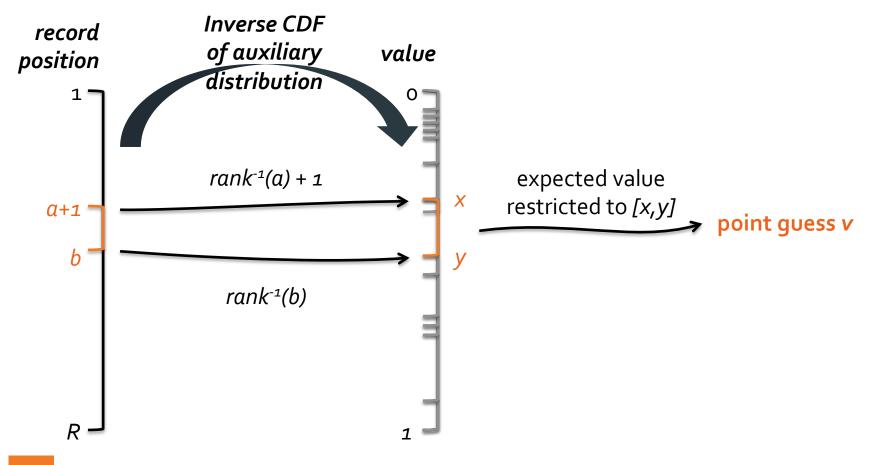
Auxiliary Data Attack: Partitioning Step

2. Assign a **position interval** to each partition.



Auxiliary Data Attack: Estimating Step

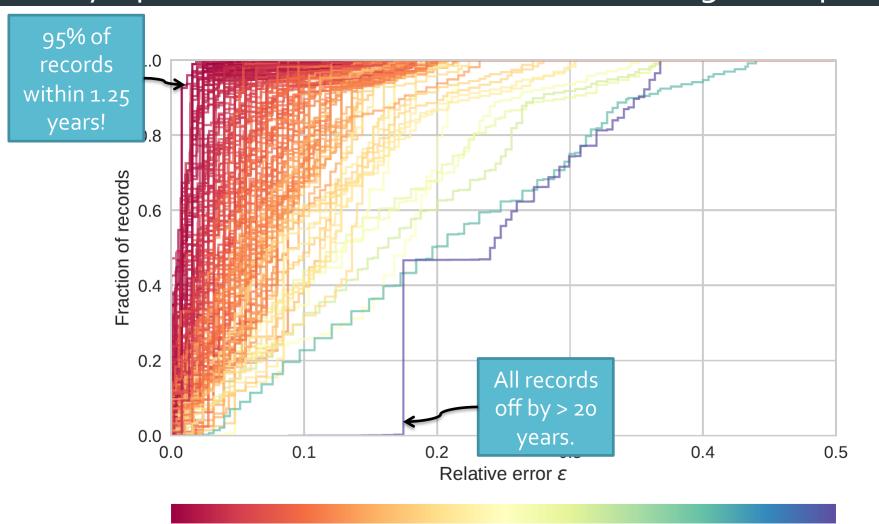
3. Assign a value to each group's position interval



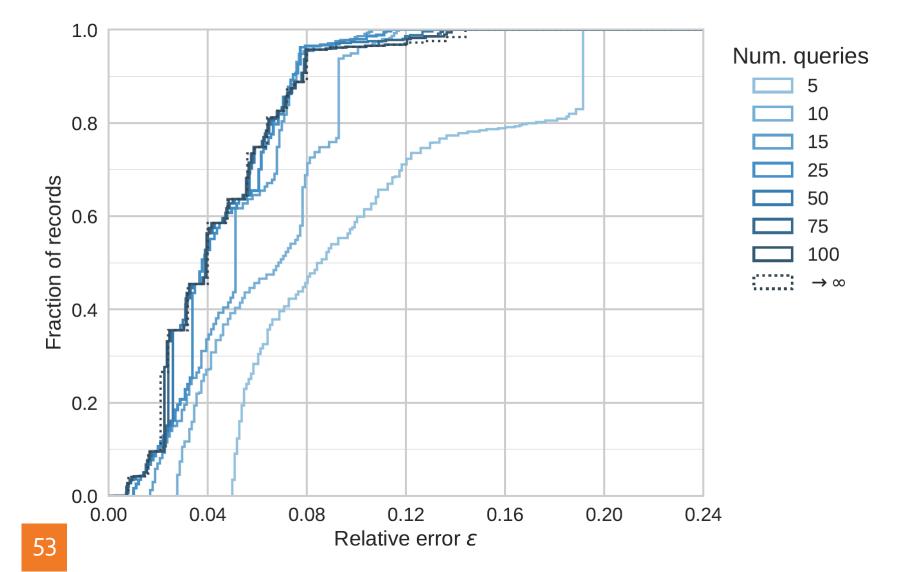
Auxiliary Data Attack: Experimental Evaluation

- Ages, *N* = 125 (0 to 124).
- Health records from US hospitals (NIS HCUP 2009).
- Target data: individual hospitals' records.
- Auxiliary data: aggregate of 200 hospitals' records.
- Measure of success: proportion of records with value guessed within *ε*.

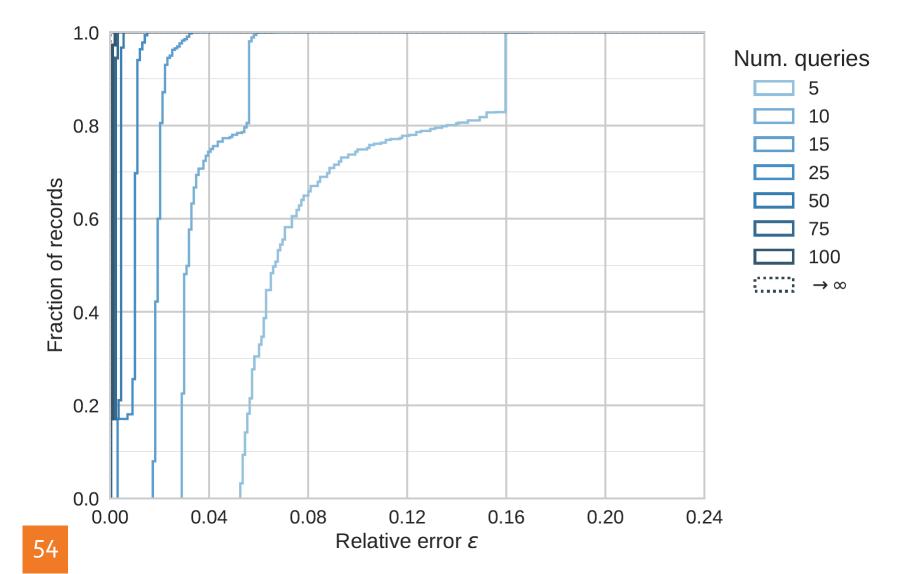
Auxiliary Data Attack: <u>Asymptotic Success Rates for Different Target Hospitals</u>



Auxiliary Data Attack: Results for Typical Target Hospital

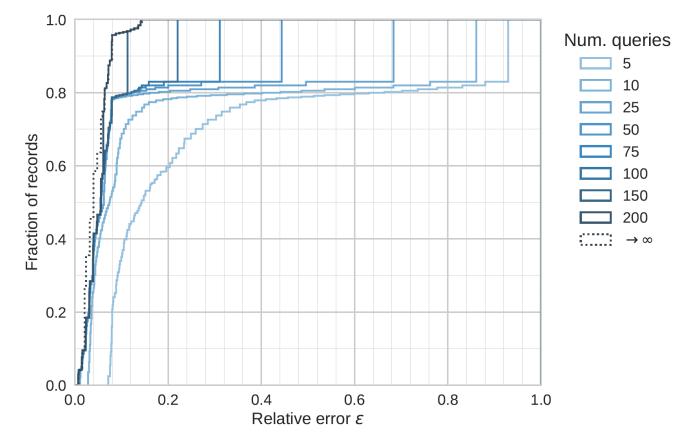


Auxiliary Data Attack: <u>Results with Perfect Auxiliary Distribution</u>

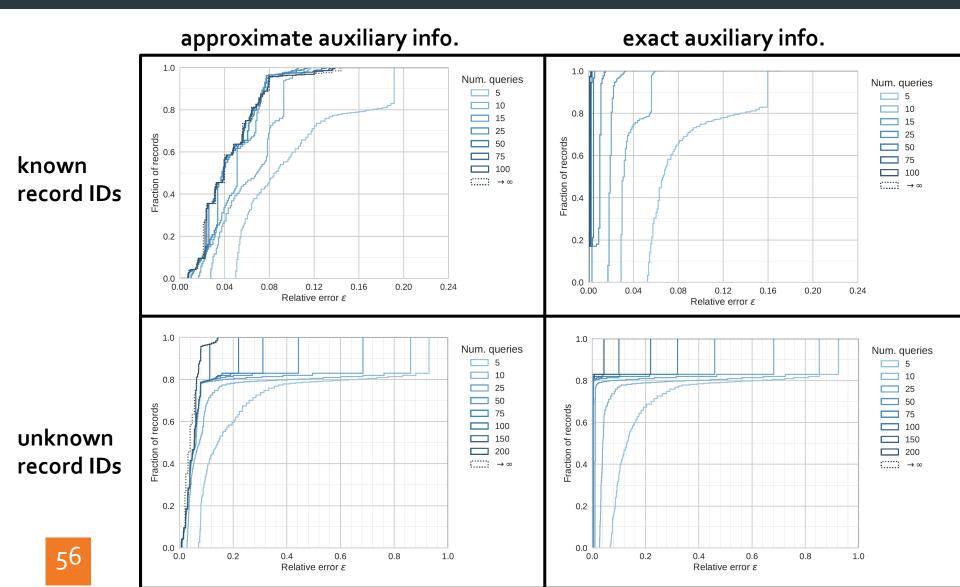


Auxiliary Data Attack: Removing Assumptions

- Estimating total number of records is **fast** if not known *α priori*
- Learning set of record identifiers **can be slow** if not known *a priori*:



Auxiliary Data Attack: Removing Assumptions



Summary and Conclusions

Summary of Our Attacks

Attack	Req'd leakage	Other req'ts	Suff. # queries
Full	AP + rank	Density	N · (log N + 2)
	AP	Density	N · (log N + 3)
ε-approximate	AP	Density	5/4 N · (log 1/ε) + O(N)
Auxiliary	AP + rank	Auxiliary dist.	???

Conclusions

- Many clever schemes have been designed, enabling range queries on encrypted data:
 - OPE, ORE schemes.
 - POPE, [HK16],...
 - Blind seer, [Lu12], [FJKNRS15],...
 - FH-OPE, Lewi-Wu, Arx, Cipherbase, EncKV,...
- These schemes are surprisingly vulnerable to attack in realistic setting (density + uniform queries + access pattern leakage): O(NlogN) queries suffice!
- Even more severe attacks are possible when auxiliary distribution + rank leakage is available.
- Read more at eprint 2017/701.