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Application	Setting	



Storing	Records	in	the	Cloud	
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give	me	all	records	with	values	
in	the	range	[1975,	1979]	

client	

Application	Scenario	



Access	Pattern	Leakage	
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give	me	all	records	with	values	
in	the	range	[1975,	1979]	

record	identifiers	

client	

OPE,	ORE	schemes,	POPE,	[HK16],	Blind	seer,	[Lu12],	[FJKNRS15],…	



Access	Pattern	Leakage	and	Rank	Leakage	
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give	me	all	records	with	values	
in	the	range	[1975,	1979]	

client	

record	identifiers	

b	
a+1	

rank	

FH-OPE,	Lewi-Wu,	Arx,	Cipherbase,	EncKV,…	



Assumptions	

1.  Data	is	dense:	all	values	appear	in	at	least	one	record.	

2.  Queries	are	uniformly	distributed.	

	

Target:	full	reconstruction:	find	the	value	associated	with	each	
record.	

Best	previous	result	(Kellaris	et	al.,	CCS	2016):	

Full	reconstruction	by	analysing	access	pattern	leakage	from	
O(N2logN)	queries.		
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Our	Main	Results	(eprint	2017/701)	

•  Full	reconstruction	with	O(NlogN)	queries		

	 	–	in	fact,	expected			N	·	(3	+	log	N).	

•  Approximate	reconstruction	with	relative	accuracy	ε	from					
O(N	·	(log	1/ε))	queries		

	 	–	in	fact,	expected			5/4	·		N	·	(log	1/ε)	+	O(N).	

•  Approximate	reconstruction	using	an	auxiliary	distribution	and	
rank	leakage.	

	 	–	more	efficient	in	practice,	evaluation	via	simulation.	

	 	–	applies	in	the	non-dense	case	too,	giving	a	new	attack	on		
	OPE/ORE	schemes.		
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Uniform	Queries:	Uniform	Endpoints	vs.	Uniform	Ranges	(N=10)	
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Distribution	of	Left	Endpoints:	
Uniform	Endpoints	vs.	Uniform	Ranges	(N=10)	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Uniform	endpoints	

Uniform	ranges	
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Coupon	Collector’s	Problem	
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Coupon	Collector’s	Problem	
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Attack	1:	Full	Reconstruction	



Motivating	Example	(with	Rank	Leakage)	

•  Suppose	left	endpoints	of	query	intervals	are	chosen	uniformly	at	random.	

•  Wish	to	observe	at	least	1	query	with	each	of	the	N	possible	left	endpoints.	

•  Expected	number	of	queries	needed	is	at	most		N	·	(1	+	log	N).	

14	
relabelled	for	
convenience	

hidden	 leaked	

[x,y]	 a	=	rank(x-1)	 b	=	rank(y)	 matching	IDs	

[20,25]	 1300	 1500	 M20	

[1,18]	 0	 1200	 M1	

[55,125]	 3100	 4400	 M55	

[2,10]	 500	 800	 M2	

[7,98]	 700	 4200	 M7	



Motivating	Example	(with	Rank	Leakage)	
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1	 501				…	 …	4400	

….	

rank	

M1	–	Ui	>1	Mi	

M2	–	Ui	>2	Mi	

MN-1	–		MN	

MN	



Full	Reconstruction	(with	Rank	Leakage)	

•  Now	suppose	queries	have	ranges	chosen	uniformly	at	random.	

•  We	present	a	data-optimal	algorithm	(fails	ð	full	reconstruction	is	
impossible).	

•  Expected	number	of	sufficient	queries	is	at	most		
	 	 	N	·	(2	+	log	N)	for	N	≥	27.	

•  Main	idea:	partition,	then	sort	(easy	with	rank	leakage,	harder	
without).	

•  Expected	number	of	necessary	queries	is	at	least		
	 	 	1/2	·	N	·	log	N	–	O(N)		

for	any	algorithm.	
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Full	Reconstruction	(with	Rank	Leakage)	



Full	Reconstruction	(with	Rank	Leakage):		
Partitioning	Step	
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record	
ID	

matched	query?	

1	 2	 3	 4	 5	 6	 7	

20	 ü	 ü	 û	 û	 ü	 û	 û	

23	 ü	 ü	 û	 û	 ü	 ü	 ü	

29	 û	 ü	 ü	 û	 û	 ü	 û	

89	 û	 ü	 ü	 û	 ü	 ü	 û	

193	 ü	 ü	 û	 û	 ü	 ü	 ü	

…	

•  Equality	of	matching	defines	a	partition	of	records.	
•  Records	in	same	class	of	partition	cannot	be	distinguished.	
•  For	complete	reconstruction,	we	need	N	classes	–	one	class	

per	value.	



Full	Reconstruction	(with	Rank	Leakage):		
Partitioning	Step	
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record	
ID	

matched	query?	

1	 2	 3	 4	 5	 6	 7	
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…	

Can	also	deduce	from	rank	leakage	that,	e.g.,	records	23	and	
193	have	ranks	in	[21,30],	by	intersecting	rank	intervals.	



Full	Reconstruction	(with	Rank	Leakage):		
Partitioning	Step	
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Full	Reconstruction	(with	Rank	Leakage):	Proof	Intuition	

•  Hard	part	is	to	show	that	O(N	log	N)	queries	suffice	with	a	small	
constant.	

•  Proof	consists	of	showing	that	if	certain	favourable	queries	are	made,	
then	partitioning	succeeds	in	constructing	N	classes.	

•  Roughly	speaking,	for	our	proof	we	hope	for	queries	on	ranges:	

	 	1.	[x,*]	for	all	1	≤	x	≤	N/2		(left	coupons)	

	 	2.	[*,y]	for	all	N/2+1	≤	y	≤	N		(right	coupons)	

	 	3.	[N/2+1,y]	and	[x,N]	for	some	y	≥	x.		

•  Assuming	these	all	arise,	then	a	combinatorial	argument	establishes	
the	success	of	the	partitioning	step.	

•  First	two	cases	are	essentially	a	pair	of	coupon	collector	problems	–	
success	with	high	probability	with	O(N	log	N)	queries.	

•  Third	case	is	a	high	probability	event:	1	-	e-Q/(2N+2)		for	Q	queries.	
21	



Full	Reconstruction	(without	Rank	Leakage)	

•  Can	only	recover	values	up	to	reflection.	
•  Data-optimal	algorithm	(fails	_	full	reconstruction	is	impossible).	

•  Expected	number	of	sufficient	queries	is	at	most		
	 	 	N	·	(3	+	log	N)	for	N	≥	26	

•  Partition	(as	before),	then	sort*.	
•  Expected	number	of	necessary	queries	is	at	least		

	 	 	1/2	·	N	·	log	N	–	O(N)		

	 	-	for	any	algorithm.	

	
*Not	quite.	
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Full	Reconstruction	(without	Rank	Leakage):		
Sorting	Step	
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Full	Reconstruction	(without	Rank	Leakage):		
Sorting	Step	–	Extending		
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Full	Reconstruction	(without	Rank	Leakage):		
Sorting	Step	–	Extending		
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all	records	



T	

Full	Reconstruction	(without	Rank	Leakage):		
Sorting	Step	
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Full	Reconstruction	(without	Rank	Leakage):		
Sorting	Step	

27	
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Full	Reconstruction	(without	Rank	Leakage):		
Proof	Intuition	

•  Hard	part	is	again	to	show	that	O(N	log	N)	queries	suffice,	with	a	
small	constant.	

•  Proof	again	consists	of	showing	that	if	certain	favourable	queries	
are	made,	then	partitioning	succeeds	in	constructing	N	classes.	

•  Coupon	collecting	bounds	then	establish	that	O(N	log	N)	queries	
are	enough.	
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Attack	2:	Approximate	Reconstruction	



Approximate	Reconstruction	Attack		
(without	Rank	Leakage)	

•  Recover	values	up	to	reflection	and	with	relative	error	ε.	

•  Expected	number	of	sufficient	queries	is		
	 	 	5/4	·		N	·	(log	1/ε)	+	O(N).	

•  Expected	number	of	necessary	queries	is	at	least		
	 	 	1/2	·	N	·	(log	1/ε)	–	O(N)		

	for	any	algorithm.	

•  Not	data-optimal	without	rank	leakage	(but	is	with	it)	
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Coupon	Collection	(N=125)	
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Coupon	Collection	(N=125)	
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Approximate	Reconstruction:		
Old	Partitioning	Method	Doesn't	Work	
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Approximate	Reconstruction:	Partitioning	Step	
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1.  Pick	any	record	r.	



Approximate	Reconstruction:	Partitioning	Step	
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2.				Intersect	all	queries	matching	r	to	get	M.	



Approximate	Reconstruction:	Partitioning	Step	

36	

2.				Intersect	all	queries	matching	r	to	get	M.	

	

M	



Approximate	Reconstruction:	Partitioning	Step	
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3.				Find	qL	and	qR	:	qL	∩	qR	=	M	and	|qL	U	qR|	maximised.	

M	 qR	qL	



Approximate	Reconstruction:	Partitioning	Step	
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4.				Find	q'L	:	qL	∩	q'L	≠	∅,	q'L	∩	qR	⊆	M,	|qL	U	q'L	|	maximised.	
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Approximate	Reconstruction:	Partitioning	Step	
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5.				Find	q'R	:	qR	∩	q'R	≠	∅,	q'R	∩	qL	⊆	M,	|qR	U	q'R	|	maximised.	
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Approximate	Reconstruction:	Partitioning	Step	
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6.				Start	over	if	not	every	record	is	in	qL	U	q'L		U	qR	U	q’R.	

qR	qL	

q'L	

q'R	
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Approximate	Reconstruction:	Partitioning	Step	
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halfL	
halfR	M	

7.				Split	into	halfL	=	qL	U	q'L,	halfR	=	qL	U	q'L,	and	M.	



Approximate	Reconstruction:	Partitioning	Step	
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halfR	\	M	
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halfL	\	M	

7.				Split	into	halfL	=	qL	U	q'L,	halfR	=	qL	U	q'L,	and	M.	



Approximate	Reconstruction:	Sorting	Step	
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8.				Form	left	&	right	coupons	with	queries	containing	M.	

halfR	\	M	halfL	\	M	 M	

1	 N	

nR	right	coupons	

nL	left	coupons	



Approximate	Reconstruction:	Sorting	Step	
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9.				Use	left	&	right	coupons	to	sort	halfL	\	M	&	halfR	\	M.	

1	 N	

halfL	\	M	 M	 halfR	\	M	



Approximate	Reconstruction:	Sorting	Step	

45	

9.				Use	left	&	right	coupons	to	sort	halfL	\	M	&	halfR	\	M.	

1	 N	

nL	+	1	+	nR	=	(1-ε)	·	N	

ò	

reconstruction	with	precision	ε	·	N	
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Attack	3:	Reconstruction	with	Auxiliary	Data	



Reconstruction	with	Auxiliary	Data	and	Rank	Leakage	

•  As	before,	queries	have	ranges	chosen	uniformly	at	random.	

•  Assume	access	pattern	and	rank	are	leaked.	

•  We	now	also	assume	that	an	approximation	to	the	
distribution	on	values	is	known.	
•  “Auxiliary	data”.	

•  From	aggregate	data,	or	from	another	reference	source.	

•  We	show	experimentally	that,	under	these	assumptions,	far	
fewer	queries	are	needed.	

•  Now	no	requirement	on	density,	so	interesting	for	OPE	and	
ORE	schemes	too	(OPE/ORE	schemes	are	trivial	to	break	in	
dense	case).	
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Auxiliary	Data	Attack:	Partitioning	Step	

record	
position	

group	of	all	records	
appearing	in	exact	
same	subset	of	
queries	

1.				Partition	records	as	in	full	reconstruction	attack.	

1	

R	
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Auxiliary	Data	Attack:	Partitioning	Step	

intersect	leaked	
rank	intervals	to	get	
position	interval	

record	
position	

1	

R	

2.				Assign	a	position	interval	to	each	partition.	

a+1	

b	
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Auxiliary	Data	Attack:	Estimating	Step	

3.				Assign	a	value	to	each	group's	position	interval	
record	

position	
1	

R	

a+1	

b	

rank-1(a)	+	1	

rank-1(b)	

value	

0	

1	

x	

y	

expected	value	
restricted	to	[x,y]	

point	guess	v	

Inverse	CDF	
of	auxiliary	
distribution	



Auxiliary	Data	Attack:	Experimental	Evaluation	

•  Ages,	N	=	125	(0	to	124).	
•  Health	records	from	US	hospitals	(NIS	HCUP	2009).	

•  Target	data:	individual	hospitals'	records.	
•  Auxiliary	data:	aggregate	of	200	hospitals'	records.	
•  Measure	of	success:	proportion	of	records	with	value	guessed	
within	ε.	
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Auxiliary	Data	Attack:	
Asymptotic	Success	Rates	for	Different	Target	Hospitals	
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95%	of	
records	

within	1.25	
years!	

All	records	
off	by	>	20	
years.	



Auxiliary	Data	Attack:		
Results	for	Typical	Target	Hospital	
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Auxiliary	Data	Attack:		
Results	with	Perfect	Auxiliary	Distribution	
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Auxiliary	Data	Attack:	Removing	Assumptions	

•  Estimating	total	number	of	records	is	fast	if	not	known	a	priori	

•  Learning	set	of	record	identifiers	can	be	slow	if	not	known	a	priori:	
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Auxiliary	Data	Attack:	Removing	Assumptions	
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Summary	and	Conclusions	



Summary	of	Our	Attacks	
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Attack	 Req'd	leakage	 Other	req'ts	 Suff.	#	queries	

Full	 AP	+	rank	 Density	 N	·	(log	N	+	2)		

AP	 Density	 N	·	(log	N	+	3)	

ε-approximate	 AP	 Density	 5/4	N	·	(log	1/ε)	+	O(N)	

Auxiliary	 AP	+	rank	 Auxiliary	dist.	 			???	



Conclusions	
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•  Many	clever	schemes	have	been	designed,	enabling	range	queries	on	
encrypted	data:	

•  OPE,	ORE	schemes.	

•  POPE,	[HK16],…	

•  Blind	seer,	[Lu12],	[FJKNRS15],…	

•  FH-OPE,	Lewi-Wu,	Arx,	Cipherbase,	EncKV,…	

•  These	schemes	are	surprisingly	vulnerable	to	attack	in	realistic	setting	
(density	+	uniform	queries	+	access	pattern	leakage):	O(NlogN)	queries	
suffice!	

•  Even	more	severe	attacks	are	possible	when	auxiliary	distribution	+	rank	
leakage	is	available.	

•  Read	more	at	eprint	2017/701.	


