Computations on Encrypted Data for the Cloud

Secure Cloud Services and Storage Workshop Oslo, Norway - September 10th, 2017

David Pointcheval CNRS - ENS - INRIA

Dropbox

DOneDrive

Introduction

Anything from Anywhere

Introduction

Security Requirements

As from a local hard drive/server, one expects
Storage guarantees
Privacy guarantees
confidentiality of the data
anonymity of the users
obliviousness of the queries/processing

How to proceed?

Introduction

Confidentiality vs Sharing & Computations

Classical Encryption allows to protect data It the provider stores them without knowing them log nobody can access them either, except the owner

> How to share the data? How to compute on the data?

Some Approaches

Broadcast Encryption

The sender chooses a target set Users get all-or-nothing about the data

[Fiat-Naor - Crypto '94]

Some Approaches

Fully Homomorphic Encryption

FHE allows any computations on encrypted data But the result is **encrypted** as the inputs!

[Rivest-Adleman-Dertouzos - FOCS '78] [Gentry - STOC '09]

Some Approaches

Functional Encryption

Ŗ

The authority generates functional decryption keys DK_f according to functions f From C = Encrypt(x), $\text{Decrypt}(DK_{f,} C)$ outputs f(x)This allows controlled sharing of data

[Boneh-Sahai-Waters - TCC '11]

+

Functional Encryption

Functional Encryption is Powerful

Functional Encryption allows access control: \bigcirc with $f_{G}(x || y) = (\text{if } y \in G, \text{ then } x, \text{ else } \bot)$: broadcast encryption Functional Encryption allows computations: Concrete functions: inner product

- Solution with $f_{id}(x \mid y) = (if y = id, then x, else \perp)$: identity-based encryption
- \bigcirc any function f: in theory, with iO (Indistinguishable Obfuscation)

FE: Concrete Case

Stu	dent		English				CS				Math			
Name		W	Written		Spoken		Theory		Practice		Algebra		Analysis	
Year 1														
Year 2														
Year 3														
Name Class	Enalish English	CS CS	Math Math		English English		CS		Math		Name Class	Total Total	Class	Total
Year 1				Class	Written	Spoken	Theory	Practice	Algebra	Analysis	Year 1			ΙΟΙΔΙ
Year 2						орокон			7 ligobra	, thatyoid	Year 2		3Years	
Year 3				Total							Year 3			

For each student: transcript with all the grades
 Access to partial information for each student
 And even global grades for the class

ryptoCloud

Functional Encryption

FEI nner Product

Cells of derived tables are linear combinations of the grades from the main table:

 $c_i = \sum a_{i,j} b_j =$ \overrightarrow{b} : vector of the private grades, encrypted in the main table $\bigcirc \overrightarrow{a_i}$: vector of the public coefficients for the cell c_i , defines f_i With ElGamal encryption: computations modulo p if grades, coefficients, and classes small enough: DLog computation

[Abdalla-Bourse-De Caro-P. - PKC '15 - EPrint 2015/017]

$$\overrightarrow{a_i} \cdot \overrightarrow{b}$$

Inner-Product Functional Encryption

FEI Limitations

- Initial result: selective security But improved to adaptive security Anyway:
- one key limits to one function on any vector a malicious player could ask many functional keys too many keys reveal the plaintexts... a unique sender can encrypt a vector Multi-Input Functional Encryption (MIFE)

[Goldwasser-Gordon-Goyal-Jain-Katz-Liu-Sahai-Shi-Zhou - Eurocrypt '14 - EPrint 2013/727 - EPrint 2013/774]

[Abdalla-Bourse-De Caro-P. - PKC '15 - EPrint 2015/017]

[Agrawal-Libert-Stehlé - Crypto '16 - EPrint 2015/608]

Inner-Product Functional Encryption

IP-FE: Concrete Security?

- **IP-FE**: from c = E(x) and dk_y , for *n*-vectors x and y, one gets x.y
- \bigcirc *n* different keys reveal *x*
- the adversary is not allowed to ask keys that trivially tell them appart. \Rightarrow if *n* vectors in the sets, the adversary cannot ask any key!
- for the indistinguishability between two sets of vectors, **IP-MIFE**: from $c_1 = \mathbf{E}(x_1), \ldots, c_n = \mathbf{E}(x_n)$ and dk_y, one gets x.y \bigcirc if no ordering: one immediately gets n! linear relations on x \bigcirc
- even with ordering, if public-key encryption: mix-and-match attack

Inner-Product Functional Encryption

IP-FE: Too Many Messages/Keys? IP-FE with Helper: [Dupont-P. - AsiaCCS '17] \bigcirc from $c = \mathbf{E}(x)$ and $d\mathbf{k}_{v}$, for *n*-vectors x and y, one must ask an helper the helper Iearns as few as possible about the input (possibly the ciphertext, the function, the user, etc) Imits the number of answers (according to a bound on the inputs) Iearns nothing about the output

whereas there are additional interactions no much leakage of information to the helper more reasonable security model •••

David Pointcheval

Improvements

IP-MIFE: Mix-and-Match Attacks?

IP-MCFE Senders have secret encryption keys ek_i to generate $c_i = \mathbf{E}(i,\lambda,x_i)$ for a label λ

Multi-User Inputs Mix-and-match attacks avoided by private encryption More reasonable security model

- [Chotard-Phan-P. Work in progress] Multi-Client Functional Encryption with Private Encryption:
- Solution From c_1, \ldots, c_n , for the same label λ , and sk_v, one gets x.y

Improvements

FE: More Applications

One has access to a HUGE encrypted labeled training data

No information leaked about the training data? No more than in the prediction function... but the latter may leak a lot about training data with model inversion attacks even just from black-box prediction queries!

- The Graal in Privacy: Machine Learning on Encrypted Data Functional Encryption outputs the prediction function in clear

 - [Fredrickson-Lantz-Jha-Lin-Page-Ristenpart Usenix Security '14]

Improvements

Conclusion

Functional Encryption Ideal functionalities on encrypted data But unlimited access In practice The ideal functionality leaks a lot!

- Queries should remain under some control Or answers should be noisy (differential privacy)

